
Pergamon 

www.elsevier.corn/locate/jappmathmech 

J. AppL Maths Mechs, Vol. 65, No. 4, pp. 665-670, 2001 
© 2001 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021--8928(01)00070-3 0021-8928/01/S--see front matter 

MULTIBODY SYSTEMS WITH 
UNILATERAL CONSTRAINTSt 

F. P F E I F F E R  

Munich, Germany 

e-mail: pfeiffer@lbm.mw.tu.muenchan.de 

(Received 24 January 2001) 

A brief survey of theoretical and practical applications of the complementarity principle in multibody systems with many multiple 
unilateral contacts is presented. Considered in a straightforward manner such systems involve a combinatorial problem of many 
dimensions, which can only be solved reasonably by the introduction of the complementarity idea. This states that for unilateral 
contacts either the relative kinematics are zero and the corresponding constraint forces are non-zero, or vice versa. Relations 
between the complementarity problem and linear programming problems are discussed. © 2001 Elsevier Science Ltd. All rights 
reserved. 

1. C O N T A C T  L A W S  A N D  C O M P L E M E N T A R I T Y  

Complementarity features can be found in many fields of physics, mathematics, especially mathematical 
optimization, and in areas like operations research and economics. In a these cases two magnitudes or 
two groups of magnitudes exclude each other. In mechanics all unilateral contacts possess such a 
property, where either the magnitudes of the relative kinematics are zero and the corresponding 
constraints forces are non-zero, or vice versa. The product of these two groups of magnitudes is therefore 
always zero. This constitutes a rule, which enables us to investigate multibody systems with unilateral 
constraints. 

The basic ideas of unilateral mechanics are very old. Fourier describes [1] a "principle of virtual 
velocity" not only for bilateral but also for unilateral constraints. He defines (in words) the impenetrability 
condition by considering the properties of relative kinematics in the contact and establishes the principle 
of virtual work, or better, virtual power in the form used today (see [2]). If we write down his statement 
in modern mathematical notation, we obtain a set of inequalities defining the complementarity problem. 

At the beginning of the twentieth century Boltzmann considered the topic of unilateral contacts in 
his lectures [3]. He defined the principles of mechanics, virtual work, for example, regarding also 
unilateral contacts and obtained sets of inequalities. Later Signorini published a paper on problems 
of elastomechanics, where he introduced an impenetrability condition in the form of a linear 
complementarity problem, in a form we still use today. 

The father of non-smooth mechanics is Moreau, who not only established the mechanical but also 
the mathematical fundamentals of this new science, which represents a substantial extension of classical 
mechanics [4, 5]. Panagiotopoulos completed the new theories by introducing inequalities which include 
non-convex features [6]. Both these scientists apply the idea of complementarity as one important and 
basic element for their theoretical evolution. Most of their applications refer to problems of 
elastomechanics. 

From the very beginning it was evident, that the methods used by Moreau and Panagiotopoulos could 
also be transferred to multibody dynamics. After long and fruitful discussions with Panagiotopoulos, 
who died at an early age in 1998, workers in the Department of Applied Mechanics at the Technical 
University of Munich about ten years ago started to establish a theory for multibody systems with multiple 
unilateral contacts, which has since proved its reliability in many theoretical and practical tests [7]. 

Principally, we may apply two models of contacts. The first model is classical and discretizes the local 
stiffness and damping behaviour in a suitable way so to be as close as possible to the physical 
manifestations. The contact formulae of Hertz or finite elements models are examples [8]. The second 
method ignores local details and approximates contact behaviour by more global and mostly simple 
relations like Coulomb's law of friction or the impact laws of Newton and Poisson [9]. It is a 
representation by parametric contact coefficients, which must be measured, and describes the most 
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important relations, which hold at least for a large variety of applications. We shall focus on the second 
method, which also fits better into the framework of multibody dynamics. 

First we will recall the well-known laws mentioned above. For dry friction we shall apply Coulomb's 
law in the following form 

kr~ I < g ° i L u i '  gr, = 0 (sticking) 

kr~ = +la0sku i , gr~ ~< 0 (negative sliding) (1.1) 

kr~ = -g0s~m~, gr~ ~> 0 (positive sliding) 

where gri is the relative velocity at contact i, and ~Ni and )~Ti are the relevant constraint forces in the 
normal and tangential directions respectively. Equation (1.1) can be interpreted as a double corner law 
as shown in Fig. 1, where the segments marked 1, 2 and 3 correspond to sticking, negative sliding, and 
positive sliding respectively. The quantity )~0i = P-Oi~,Ni - [),ri [ will be called "friction saturation". 

We are either within the friction cone with 

gT i ] = O, -- I.l, Oi~ Ni ~ ~,Ti ~ I.£Oi~,N i 

or on its surface where 

The friction coefficient ~t0i is defined as the limit (see Fig. 2) 

= ) ( 1 . 2 )  

The constraint force ~'Ui in the normal direction results also from a contact law, which might be 
characterized by a contact separation mechanism. If we have a normal relative distance at contact i, 
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denoted by gNi, then the interdependency with the corresponding constraint force ~,N; consists 
of the classical complementarity principle [1, 10]: either gNi = 0, ~Ni >~ 0 (half-line 1 ifi Fig. 3), 
orgN. >I 0, ~'N. = 0 (half-line 2). In this case the product gNi~,Ni is always equal to zero. 

Bo'th contact laws (Figs 1 and 3) include complementarity features, because the double comer in 
Fig. 1 can be decomposed in two so-called "unilateral primitives" in the form of two simple corners. 
We can say in the case of frictional contacts that either the relative velocity gT/is zero and the friction 
saturation ~,0i is non-zero, or vice versa; the product ?,T),Oi is always zero. 

• . l . 

As regards the impact laws, we have in classical mechamcs two models, Newton's kinematic and 
Poisson's kinetic relations. Newton's law connects the relative normal velocity after an impact with that 
before the impact, stating 

. +  

gtv, = -e-ig-Ni (1.3) 

where minus and plus superscripts correspond to instants shortly before and shortly after the impact. 
Energy losses are taken into account by the coefficient of restitution ei. 

Poisson's law determines the relation between the impulses A = f~.dt in the form 

A~ = e~A, (1.4) 

The physical idea behind Eq. (1.4) consists of the storage of impulses during compression and a gain 
connected with losses during expansion of the impact process. Therefore, Poisson's law can be applied 
in the normal and tangential direction's of the contact without generating physical inconsistency. In 
any case the loss coefficients El, E~ have to be measured for each specific pair of materials. 

Consider an example of the combinatorial problem, connected with many contacts, and its solution. 
A continuously variable transmission changes the transmission ratio continuously by reducing 
hydraulically the axial distance of the conical disc on one side and at the same time increasing the 
axial distance of the second conical disc [11]. The chain itself consists of elements with rocker 
pins, which come into contact with the disc. Each rocker pin, being in contact with the two sides 
of the disc, can move in radial and circumferential directions or stick, which results in three possibilities. 
Next we may have a contact or a detachment state, which gives another two possibilities. If we 
have ten rocker pin elements within the conical disc of one wheel only, we obtain 51° contact 
combinations. Item-by-item examination of these possibilities is obviously impossible. From the other 
hand, using complementarity ideas, we can solve the problem in a reasonable time [12]. 

2. U N I L A T E R A L  DYNAMICS 

The equations of motion for multibody systems with unilateral contacts are published elsewhere 
[7, 13]; we shall therefore give only a short summary here. Representing, as a first step only, all bilateral 
constraints and couplings by force laws, we can always represent multibody systems as follows: 

M(q,t)~i-h(q,/l , t)=0, q E R  f, h E R  f,  M E ~  f ' f ,  (2.1) 

where q are generalized coordinates, M is a symmetric mass matrix, and h are all forces acting in the 
system• Unilateral contacts do not block any further degree of freedom. If some of the unilateral 
constraints become active, the remaining number of degrees of freedom is smaller than f. 
Furthermore, contact geometry for spatial cases has been considered by means of differential geometry 
and corresponding parametrization [14, 15]. 
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We first define all time-dependent contact sets present in a unilateral multibody system [7]• The set 
I A consists of n A indices of all contact points. The elements of the set 1 c are the nc  indices of the unilateral 
constraints with vanishing normal distance gNi = 0, but arbitrary relative velocity in the normal direction. 
The index set IN C l c  contains the nN indices of the potentially active normal constraints which satisfy 
the necessary conditions for continuous contact (gNi = 0, gNi = 0). This set includes, for example, 
all contact states with slipping• The n r  elements of the set 17- C IN are the indices of the potentially 
active tangential constraints withgr, = 0. The numbers of elements of these index sets are not constant 
because there are variable states of constraints due to separation and stick-slip phenomena. 

As a next step we must organize all transitions from contact to detachment and from stick to slip 
and the corresponding reverse transitions. In the normal direction of a contact we find the following 
situations at contact i: passive contact gN. (q, t) /> 0, ~N = 0 (indicator gNi), transition to contact, 
gN. (q, t) = O, ~,Ni ~ O, active contactgNi (q/t) = O, kNi > 0 (indicator ~,X i, constraint gN i = 0), transition 
t°~detachment gui (q, t) >1 O, ~'Ni = O. 

The kinematic quantities gui, g,u., gu. are given from contact geometry. The constraint f o r c e s  ~,Ui 
must be compressive forces. If they change sign, we get separation. Thus, we have n N complementarity 
conditions (expressed on an acceleration level) 

..T 
gN ~>0, k N i0, gNkN = 0  (2.2) 

They are equivalent to the variational inequality 

• . T  * * 
- -gN() f ,N- -kN)~O,  k N eCN,  V k o  ~CN (2.3) 

The convex set CN = {~N" ~'N ~> 0} contains all admissible contact forces. Conditions (2.2) correspond 
to Fig. 3. 

With respect to the tangential direction of a contact we shall confine our considerations to the 
application of Coulomb's friction law, which in no way means a loss of generality. The complementary 
behaviour is a characteristic feature of all contact phenomena, irrespective of the specific physical law 
of contact• Furthermore, we shall assume that within the infinitesimal time step for a transition from 
stick to slip and vice versa the coefficients of static and sliding friction are the same, which is expressed 
by Eq. (1.2)• For gT i ¢ 0 any friction law may be applied (see Fig. 2). With this property Coulomb's 
friction law distinguishes between the two cases 

]~-r,]<l-t0i~,ui =:~lgr,. [ =0,  i ~ l r  (2.4) 

[kr~[ = ~oikN~ ==>l gr~ 1> O, i ~ I v \ I T 

The first formula in (2.4) corresponds to stiction; this means that if  the relative tangential velocity 
is zero, the constraint force lies within the friction cone. The second formula corresponds to sliding; 
this means that the constraint force lies on the friction cone. In addition we must take into account the 
fact that in the tangential contact plane we might get one or two directions depending on plane or spatial 
contact. 

From this we can summarize the possibilities in the tangential direction: passive contact (sliding, set 
i ~ IN \ IT, indicator [gri[ = 0); transition from slip to stick; active contact (sticking, i ~ IT, indicator 
[ ~.kN. 1-I kr.. I ~> 0, constraint g~. = 0); transition from stick to slip. 

F ro~  a nt~merical point of view, we have to check the indicator for a change in sign, which then 
requires subsequent interpolation. For a transition from stick to slip one must examine the possible 
development of a non-zero relative tangential acceleration at the start of sliding. 

Equation (2.4) put on an acceleration level can then be written in the more detailed form 

[kr~ ] < ~toi~'Ni, gr~ = 0 i ~ I r (sticking) 

k~ = +~t0iLNi, gr~ <- 0 i ~ I N \ 1 r (negative sliding) 

7~r~ = --laOikN~, gr~ ~ 0 i ~ I v \ I r (positive sliding) 

(2.5) 

Equation (2.5) corresponds to Fig. 1, which can be decomposed into two or four simple comers (see 
Fig. 3) by proper choice of variables. We obtain [16] 
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y = A x + b ,  y>~0, x>~0, y r x = 0 ,  y , x ~ R " *  (2.6) 

where n* = n N + 4n r in the case of decomposition into four and n* = n N + 2n T for decomposition into 
two elementary corners. The quantity x includes the contact forces and one part of the decomposed 
accelerations, and the quantity y includes the relative accelerations and in addition the friction saturations 
~,0i (see Fig. 1). Equation (2.6) describes a linear complementarity problem, thus being adequate for 
plane contacts. In the case of spatial contacts the friction saturation contains the geometric sum of two 
possible friction directions, leading to a non-linearity which cannot be solved in a straightforward way 
[171. 

Just as in the normal case we can represent contact law (2.5) by a variational inequality of the form 

• " T  * 
gr~ (Lr, - ~,r~ ) ~ 0, ~,r~ ~ Cry, V~,~ ~ Cr~ (2.7) 

The convex set CT. contains all admissible contact forces Z~r. in the tangential direction. 
. l , , . l 

To derive the equations of motion including unilateral effects we must combine the multibody 
equations (2.1) with the unilateral constraints (2.2) and (2.6). As a first step we include the constraint 
forces in Eq. (2.5), keeping in mind that in a system with additional unilateral constraints the number 
of degrees of freedom is variable. To avoid difficulties with many different sets of minimal coordinates, 
we take one set of generalized coordinates for each of combinations IA \ IC, IA \ IN, IA \ I t ,  and include 
the active unilateral constraints and their constraint forces into the equations of motion by a Lagrange 
multiplier technique. 

Mi~- h -  (W+NG)~.  = 0, ~ , = W r q + ~  

gr  II Wr 

W = (Wu,WT), Nc -- (HR,0) 

The subscripts N and T stand for the normal and tangential direction (the plane case), W are the 
unilateral constraint matrices and N c represents contacts with sliding friction. Outside transition events 
and thus for an unchanging contact configuration the relative accelerations ~ are zero. In this case 
Eqs (2.8) have a solution for ~, ~.. 

We now combine the equations of motion in the form (2.8) with variational inequalities (2.3) and 
(2.7). The resulting system is not solvable. The variational inequalities are therefore converted into 
equalities. From this we get a non-linear system of equations which represents linear or non-linear 
complementarity problems depending on the type of contact, i.e. plane or spatial contacts. Linear 
complementarity problems can be solved by algorithms related to linear programming methods, for 
example, Lemke's algorithm; non-linear complementarity problems require iterative algorithms [17]. 

On the basis of the above ideas and before the background of [5], a new theory of impacts with friction 
has been developed [14] and verified with more than 600 tests on a specially designed impact machine 
[18]. It has been appl,_'ed successfully to many practical problems, one of which is the damping of wind- 
induced oscillations of a stack damper. A numerical analysis, carried out in [19], showed good agreement 
between the theory and experimental data. 
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